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Cyclopropanes are the focus of much interest as they are found
in many natural and unnatural products possessing interesting
biological activities.1 They are also useful synthetic intermediates2

and can serve as mechanistic probes in many organic reactions.3

Surprisingly, however, the number of approaches to access
cyclopropanes from alkenes is limited to methodologies developed
a few decades ago. These include free carbenes,4 transition metal-
catalyzed diazo decomposition,5 Simmons-Smith reaction,6 and
Michael initiated ring closure.7 The development of a reagent that
would overcome the inherent limitations of these classical
approaches would be of great value. Indeed, the use of a large
excess of reagent (>5 equiv) is often required and so far only
the Simmons-Smith reaction is capable of an efficient enanti-
oselective methylene transfer, in cases where allylic alcohols are
used as substrates.6 In this perspective, we were interested in the
development of a new concept of metal carbenoids that could
show increased reactivity and/or provide new avenues to perform
enantioselective cyclopropanation reactions. Herein, we report
conceptually different carbenoids, the acyloxymethylzinc car-
benoids, which are reactive and promising cyclopropanating
reagents. Furthermore, these reagents are the first examples of
zinc carbenoids that can cyclopropanate alkenes without involving
the breaking of a carbon-halogen bond in the methylene transfer
process.8

Drawing on the experimental evidence for Lewis acid catalysis
in the Simmons-Smith reaction9 and Nakamura’s reported five-
membered, cyclic transition state modelA,10 we reasoned that a
carbenoid with internal Lewis acid activation could be an efficient
methylene transfer reagent. We therefore became interested in
the versatile carbenoid templateB since this family of reagents
is the methylene transfer equivalent of peracids in epoxidation
reactions (C).

With this model in mind, the R1 group should be electron
withdrawing to increase the electrophilicity of the carbenoid,
which is expected to be enhanced through intramolecular coor-
dination to the zinc atom (Scheme 1,B). Gratifyingly, it was found
that a 1:1 mixture of iodomethyl perfluoropentanoate111 and

diethylzinc affords a reactive carbenoid. Furthermore,1H NMR
analysis indicated that the zinc-iodine exchange had occurred
as Et-I was formed quantitatively, thus affording the carbenoid
of the general structureB. More conveniently, the desired
alkylzinc reagent can be prepared in the presence of the alkene,
using photoinduced zinc-iodine exchange.12,13 The reactivity of
this carbenoid was examined mainly by its reaction with a variety
of unfunctionalized olefins (Table 1),14 since these substrates are
generally poorly reactive under the existing Simmons-Smith
protocols.15

As illustrated in Table 1, this reagent cyclopropanates ef-
ficiently a variety of unfunctionalized alkenes (entries 1-4).
Interestingly,trans-stilbene, which is often unreactive under most
Simmons-Smith protocols, gives the desired product in modest
yield (entry 5).16 As expected, the cyclopropanation of function-
alized substrates proved also efficient (entry 6). While the reaction
conditions are not optimized,17 the data presented in Table 1
unambiguously demonstrate the synthetic potential of zincmethy-
lesters as efficient cyclopropanating reagents. Although this type
of reagent is precedented, the parent zincmethylbenzoate com-
pounds have been shown to be poorly reactive as either electro-
philes18 or nucleophiles.19

The structure of a member of this class of carbenoids was
confirmed by X-ray crystallography. The bis(benzoyloxymethyl)-
zinc analogue2 was prepared using both the reported18 and
photoinduced12 routes (eq 1). An ORTEP drawing of2 is shown
in Figure 1 and selected bond lengths and angles are presented
in Table 2.20

In contrast with other carbenoid complexes in which the zinc
center displays a tetrahedral geometry,21 the zinc center in2
resides in a distorted square-bipyramidal environment. The Zn-C
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bond length of 1.978 Å,21 the CdO bond length of 1.227 Å, and
the Zn-O-C bond angle of 109.00° are in agreement with
literature data and the Zn-O bond length of 2.1816 Å is slightly
longer than those found in other complexes.22 X-ray crystal
structure analyses ofR-heteroatom-substituted dialkylzinc com-
pounds are rare,23 and to the best of our knowledge this is the
first structure of anR-oxygenated derivative.24

Finally, the data presented in Table 1 provide substantial
evidence that the increased reactivity of Shi’s Carbenoid15b (CF3-
CO2ZnCH2I, 3) might be attributed to in situ equilibration leading
to formation of iodomethylzinc trifluoroacetate4 under the
reaction conditions (eq 2). The acyloxymethylzinc4 was observed

both by 1H NMR and by GC analysis of hydrolyzed reaction
aliquots.25 The proposed equilibrium is precedented and appears
to be general to mixed zinc carbenoids (XZnCH2Y T XCH2-
ZnY).26

In conclusion, we have shown that acyloxymethylzinc deriva-
tives are promising cyclopropanating reagents for unfunctionalized
alkenes. The application of these reagents in directed and
enantioselective cyclopropanation reactions and the development
of a more reactive, storable, solid carbenoid21d within this family
of reagents are currently under investigation. Application of this
new concept to other metals will also be reported in due course.
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Table 1. Cyclopropanation of Unfunctionalized Alkenes Using
Ethylzincmethyl Perfluoropentanoate

a Determined by1H NMR and by GC usingn-nonane as the internal
standard.b Isolated yields are shown in parentheses.

Figure 1. ORTEP view of (PhCO2CH2)2Zn. Ellipsoids are drawn at the
30% probability level.

Table 2. Selected Bond Lengths and Angles for the
(PhCO2CH2)2Zn Comple

Bond Lengths (Å)
Zn(1)-C(1) 1.978(2) Zn(1)-O(4) 2.1816(15)
C(1)-O(2) 1.490(2) C(3)-O(4) 1.227(2)
O(2)-C(3) 1.320(2) C(3)-C(5) 1.482(3)

Bond Angles (deg)
C(1)i-Zn(1)-C(1) 159.35(13) O(2)-C(3)-O(4) 124.01(18)
C(1)i-Zn(1)-O(4) 113.53(8) C(1)-Zn(1)-O(4) 80.66 (7)
Zn(1)-C(1)-O(2) 109.43(13) O(4)i-Zn(1)-O(4) 97.22(8)
Zn(1)-O(4)-C(3) 109.00(12) Zn(1)-C(1)-O(2)-C(3) 2.7(2)
C(1)-O(2)-C(3) 116.83(15) O(2)-C(3)-C(5)-C(6) -2.4(3)
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